If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15z^2+1z-6=0
We add all the numbers together, and all the variables
15z^2+z-6=0
a = 15; b = 1; c = -6;
Δ = b2-4ac
Δ = 12-4·15·(-6)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-19}{2*15}=\frac{-20}{30} =-2/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+19}{2*15}=\frac{18}{30} =3/5 $
| 15z2+1z−6=0 | | 180=140+(x+51) | | 55000=5x^2+1000x+5000. | | 180=109+(x+74) | | 15y2−13y+2=0 | | 180=130+(8x+2) | | 15y2−13y+2=015y2-13y+2=0. | | 180=89+(97+x) | | 180=130(8x+2) | | 5.5q-4.8-7.0q=-2.1-1.5q-2.7 | | 23=x-(32*4) | | -6=-7+x/3 | | p2+18p+80=0p2+18p+80=0 | | x=2/5(x+1) | | 5.9q-4.1-7.6q=-2.2-1.7q-1.9 | | 9^x=50 | | (x+2)(x+3)+9x+42=0 | | 19=x-(32*4) | | 3x+x-20=40+x | | -8r-4=2r+16 | | (7x^2+5x)-(9x-1)+(4x^2-4)=0 | | 12w^2-w-1=0 | | 6x+7-7x+3=5x-6x-4 | | 3-4r=8r+8 | | 2^x-6=3x+9 | | 5(5t)+1=25t | | 6x+18x=72 | | 6x+4=4(x+9) | | y-(-14)=93 | | 7x^2+4x=100 | | 4(5x-1)+2(19-2x)=3(5x+3)-8 | | 2x+4=7x+1/8 |